Many Uses of Flow and Flow-like Data

Avi Freedman, CEO NANOG 65 October 2015

Background: NetFlow

- NetFlow is:
 - 20-year old technology now supported in some variant by most network devices.
 - Workable on most common ISP/carrier devices now.
- sFlow came later, is simpler and more accurate in real-time because it's just packet sampling.
- IPFIX and Netflow v9 are extensible via templates, and allow sending more than just 'basic flow' data via those templates.

'Basic' Flow

- Basic flow records contain byte and packet counters, TCP Flags, AS, next-hop, and other data aggregated by (usually) the '5 tuple' of (protocol, srcip, dstip, srcport, dstport).
- Most devices support a fixed sampling rate.
- Despite the simplicity of data, there are many use cases for basic flow data for monitoring availability, efficiency, and security of networks, hosts, and applications.

State of Device Export

- sFlow is more common at the switch layer, and NetFlow/IPFIX is more common in routers, but many devices support both protocols.
- Still possible to negatively impact packet forwarding by enabling flow export, but accuracy and stability is generally fine w/ correct software versions. Much, much better than 5+ years ago.

State of Flow Tools

- Flow tools all have some suck. Some suck more and some suck less. No perfect eng+perf+BI+ops tool.
- OSS tools don't cluster, but popular.
- Most downloadable commercial sw has scale.
- Appliances are either expensive and security-focused, or over-aggregate and can't support high-res lookback.
- Many tools groups working with Hadoop-ish, Spark, Elastic, and/or live streaming/CEP tools.
- Newer vendors are taking more big-data approach and generally doing private and/or public cloud.
- Extensibility + openness key for augmented flow use cases.

Classic Flow Use Cases

- Classic use cases include:
 - Congestion analysis for providers and/or customers
 - Peering analytics
 - Trending, planning and forecasting
 - (d)DoS detection (primarily volumetric)
 - Basic forensic/historic (who did an IP talk to)
 - Modeling of TE, what-if analysis
 - Customer cost analysis (Flow + BGP communities)

Classic View: Traffic by Source ASN

Click to select, Shift+Click to multi-select

Avg Mb/sec **Percent Total** 95th Percentile Max Mb/sec src_as HIGHWINDS5 - Highwinds Network Group, Inc., US (29798) 1,970 58.32 2,324 2,443 ≡ 981 29.02 1,315 ≡ HWNG Eweka Internet Services B.V., NL (12989) 1,247 XSNEWS-AS XS News B.V., NL (48345) 52 1.53 92 96 = COGENT-174 - Cogent Communications, US (174) 26 0.76 29 30 Ξ MICROSOFT-CORP-MSN-AS-BLOCK - Microsoft Corporation, US (8068) 22 0.65 32 32 ≡ 22 27 = HURRICANE - Hurricane Electric, Inc., US (6939) 0.65 26 INTERLINK INTERLINK, UA (43586) 20 0.58 73 81 Ξ

Classic View: Interface -> Interface Traffic

Bits/s by InterfaceTopTalkers -

Click to select, Shift+Click to multi-select

L SQL Add to Dashboard

input_port_all	Avg Mb/sec	Percent Total	95th Percentile	Max Mb/sec	
GigabitEthernet5/7 : (263) -> GigabitEthernet1/1 : tx1:23 (1)	56	11.13	62	64	≡
GigabitEthernet4/17 : (209) -> GigabitEthernet1/1 : tx1:23 (1)	50	9.92	61	62	≡
GigabitEthernet1/1 : tx1:23 (1) -> GigabitEthernet5/17 : (273)	49	9.70	63	72	≡
GigabitEthernet5/17 : $(273) \rightarrow GigabitEthernet1/1 : tx1:23 (1)$	45	8.89	63	75	=

Classic View: Remote Network Analytics

Dashboards - BGP Metrics Highwinds AS 29798 Toggle Sidebar

Classic View: Traffic by top AS_PATHs

Click to select, Shift+Click to multi-select

Ł SQL

dst_bgp_aspath	Avg Mb/sec	Percent Total	95th Percentile	Max Mb/sec	
4436 3320	522	20.67	612	640	≡
4436 6830	429	16.99	569	631	=
6169 12989 31334	183	7.22	264	290	=
65500	138	5.44	152	159	≡
4436 2914 16509	113	4.46	132	170	=
14536	104	4.09	118	124	=
4436 4436 7065	80	3.14	95	112	≡
4436 174 20880	77	3.02	130	149	<u></u>

Classic View: dDoS Detection

	Alert			Kev	Output 1	Output 2	Alert			Time Over	Recent					
Key	Name	Criticality	State	Туре	Name:Value	Name:Value	ID	Start	End	Threshold	Comment					
	many_ src_ip s_to_1 _dst	Major	ACK_ REQ	ipv4_ dst_a ddr	src_ips : 189	pps : 3277	3536	2015- 08-26 20:25	201 5-08 -26 20:4 6	45%		ď	Q	⊕	X	×
	high_f ps_per _dst_i p	Major	ACK_ REQ	ipv4_ dst_a ddr	fps : 110	pps : 118835	3537	2015- 08-26 20:25	201 5-08 -26 20:4 5	42%		ď	ଦ	⊕	X	×
	all_dst 53_or _src53 _to_1i p	Major	ACK_ REQ	ipv4_ dst_a ddr	pps : 51166	mbps : 576	462	2015- 08-26 20:25	201 5-08 -26 20:4 4	31%		ľ	Q	€	X	×
	udp_sr cdst0_	Major	ACK_ REQ	ipv4_ dst_a ddr	pps : 86391	mbps : 914	452	2015- 08-26 20:25	201 5-08 -26 20:4 4	31%		ľ	ଦ୍ର	Q	X	×
	many_ src_ip s_to_1 _dst	Major	ACK_ REQ	ipv4_ dst_a ddr	src_ips : 137	pps : 13517	3536	2015- 08-26 20:37	201 5-08 -26 20:4 7	33%		Ø	Q	€	X	×

Classic View: Device to AS to Geo

Home > Datasets
Dataset Details

'Augmented' Flow

- 'Who talked to who' data is great, but if we can get:
 - Semantics (URL, DNS query, SQL query, …)
 - Application performance info (latency, TTFB, ...)
 - Network performance info (RTT, loss, jitter, ...)
 from passive observation, it unlocks even more/more interesting use cases!
- With many of the same basic report structures.
- Some of this is already available via IPFIX/V9.

Sources of 'Augmented' Flow

- Server-side
 - OSS sensor software: nprobe, argus
 - Commercial sensors: nBox, nPulse, and others
 - Packet Brokers: Ixia and Gigamon (IPFIX, potentially more)
 - IDS (bro) a superset of most flow fields, + app decode
 - Web servers (nginx, varnish) web logs + tcp_info for perf
 - Load balancers advantage of seeing HTTPS-decoded URLs
 - CISCO AVC, Netflow Lite generally only on small devices
- Common challenge: Some of the exporters don't support sampling, and many tools can't keep up with un-sampled flow.

augflow Examples: Cisco AVC

docwiki.cisco.com/wiki/AVC-Export:PfR#PfR_NetFlow_Export_CLI

Client: Option A	ctive Performance
Exporter Format:	NetFlow Version 9
Template ID :	268
Source ID :	0
Record Size :	61
Template layout	

Field	Туре	Offset	Size
flow end	153	0	8
pfr br ipv4 address	39000	8	4
reason id	39002	12	4
counter packets dropped	37000	16	4
transport packets lost counter	37019	20	4
transport round-trip-time	37016	24	4
transport rtp jitter mean	37023	28	4
mos worst 100	42115	32	4
counter packets dropped permanent short	37001	36	4
transport packets lost counter permanen	37020	40	4
long-term round-trip-time	39006	44	4
flow class wide	95	48	6
interface output snmp short	14	54	2
pfr status	39001	56	2
flow active timeout	36	58	2
ip protocol	4	60	1

augflow Examples: Citrix AppFlow

http://docs.citrix.com/en-us/netscaler/10-5/ns-system-wrapper-10-con/ns-ag-appflowintro-wrapper-con.html https://github.com/splunk/ipfix/blob/master/app/Splunk TA IPFIX/bin/IPFIX/informationelements/netscaper-iana.xml full

tcpRTT

The round trip time, in milliseconds, as measured on the TCP connection. This can be used as a metric to determine the client or server latency on the network.

httpRequestMethod

An 8-bit number indicating the HTTP method used in the transaction. An options template with the number-to-method mapping is sent along with the template.

httpRequestSize

An unsigned 32-bit number indicating the request payload size.

httpRequestURL

The HTTP URL requested by the client.

augflow Examples: nTop

http://ntop.org

template.c in nprobe (and elsewhere)

{ 0, BOTH_IPV4_IPV6, FLOW_TEMPLATE, SHORT_SNAPLEN, NTOP_ENTERPRISE_ID, NTOP_BASE_ID+110, STATIC_FIELD_LEN, 4, numeric_format, dump_as_uint, "RETRANSMITTED_OUT_PKTS", "", "Number of retransmitted TCP flow packets (dst->src)" }, { 0, BOTH_IPV4_IPV6, FLOW_TEMPLATE, SHORT_SNAPLEN, NTOP_ENTERPRISE_ID, NTOP_BASE_ID+101, STATIC_FIELD_LEN, 2, ascii_format, dump_as_ascii, "SRC_IP_COUNTRY", "", "Country where the src IP is located" }, { 0, BOTH_IPV4_IPV6, FLOW_TEMPLATE, SHORT_SNAPLEN, NTOP_ENTERPRISE_ID, NTOP_BASE_ID+86, STATIC_FIELD_LEN, 4, numeric_format, dump_as_uint, "APPL_LATENCY_SEC", "", "Application latency (sec)" }, { 0, BOTH_IPV4_IPV6, FLOW_TEMPLATE, SHORT_SNAPLEN, NTOP_ENTERPRISE_ID, NTOP_BASE_ID+82, STATIC_FIELD_LEN, 4, numeric_format, dump_as_uint, "APPL_LATENCY_SEC", "", "NetWORK latency client <-> nprobe (sec)" },

augflow Examples: nginx, bro

- <u>http://nginx.org/en/docs/http/ngx_http_core_module.html#variables</u>
- <u>https://www.bro.org/sphinx/logs/index.html</u>

nginx: log_format combined '\$remote_addr - \$remote_user [\$time_local] ' '"\$request" \$status \$body_bytes_sent ' '"\$http_referer" "\$http_user_agent"' '\$tcpinfo_rtt, \$tcpinfo_rttvar, \$tcpinfo_snd_cwnd, \$tcpinfo_rcv_space';

<pre># cat conn.log </pre>	bro-cut	id.orig_h id.o	rig_p id.resp_	h duration
141.142.220.202	5353	224.0.0.251	-	
fe80::217:f2ff:fe	ed7:cf65	5353 ff02:	:fb -	
141.142.220.50	5353	224.0.0.251	-	
141.142.220.118	43927	141.142.2.2	0.000435	
141.142.220.118	37676	141.142.2.2	0.000420	
141.142.220.118	40526	141.142.2.2	0.000392	
141.142.220.118	32902	141.142.2.2	0.000317	
141.142.220.118	59816	141.142.2.2	0.000343	
141.142.220.118	59714	141.142.2.2	0.000375	
141.142.220.118	58206	141.142.2.2	0.000339	
г 1				

Storing and Accessing Augmented Flow

- Data back-ends need to be able to understand and ingest the extra fields.
- Often requires integration (for OSS/big data tools) or vendor support.
- And if the tools aren't 'open' via API, SQL, or CLI, data can be trapped and not as useful.
- Many first use cases are ad-hoc to prove effectiveness, then drive to UI reports/dashboards.
- Holy grail: end user app perf + net perf + net flow + host perf + app internals insturmentation.

Extensible Flow Storage: fastbit

- https://sdm.lbl.gov/fastbit/
- https://github.com/CESNET/ipfixcol/
- http://www.ntop.org

```
(nprobe CLI)
fbquery -c
'DST_AS,L4_SRC_PORT,sum(IN_BYTES) as
inb,sum(OUT_BYTES) as outb' \
-q 'SRC_AS <> 3 AND L4_SRC_PORT <> 80' \
-g 'DST_AS,L4_SRC_PORT' \
-o 'inb' \
-r -L 10 -d .
```

Storing Augmented Flow in Fastbit

APPLATENCY APPLATENCY.idx CTIMESTAMP CTIMESTAMP.idx DEFAULT COLUMN DEFAULT COLUMN.idx DEVICE ID DEVICE_ID.idx DNS DNSQ.idx DST AS DST AS.idx DST GEO DST GE0.idx DST_GE0_CITY DST_GE0_CITY.idx DST GEO REGION DST GEO REGION.idx DST_ROUTE_LENGTH DST_ROUTE_LENGTH.idx INPUT PORT INPUT PORT.idx IN BYTES IN BYTES.idx IN PKTS IN PKTS.idx IPV4_DST_ADDR

root@s5:/data/fb/333/dev1/3/2015/10/03/20/49# ls IPV4_DST_ADDR.idx **IPV4 DST ROUTE PREFIX** IPV4 DST_ROUTE PREFIX.idx **IPV4 NEXT HOP** IPV4 NEXT HOP.idx **IPV4 SRC ADDR** IPV4_SRC_ADDR.idx IPV4_SRC_ROUTE_PREFIX IPV4_SRC_ROUTE_PREFIX.idx **IPV6 DST ADDR HIGH** IPV6_DST_ADDR_HIGH.idx **IPV6 DST ADDR LOW** IPV6 DST ADDR LOW.idx **IPV6 SRC ADDR HIGH** IPV6 SRC ADDR HIGH.idx IPV6_SRC_ADDR_LOW IPV6 SRC ADDR LOW.idx L4 DST PORT L4_DST_PORT.idx L4_SRC_PORT L4_SRC_PORT.idx MPLS TYPE MPLS TYPE.idx OUTPUT PORT OUTPUT PORT.idx OUT BYTES OUT_BYTES.idx

OUT PKTS OUT PKTS.idx PROTOCOL PROTOCOL.idx SAMPLEDPKTSIZE SAMPLEDPKTSIZE.idx SAMPLE RATE SAMPLE_RATE.idx SRC_AS SRC AS.idx SRC GEO SRC GE0.idx SRC_GE0_CITY SRC GEO CITY.idx SRC_GE0_REGION SRC_GE0_REGION.idx SRC ROUTE LENGTH SRC ROUTE LENGTH.idx TCP_FLAGS TCP_FLAGS.idx TCP_RETRANSMIT TCP RETRANSMIT.idx TOS TOS.idx URL URL.idx

Use Case: Network Performance

- If the flow system can aggregate by arbitrary dimensions by AS, AS_PATH, Geo, Prefix, etc...
- Then looking at raw network performance from passive sources can be very useful.
- Ex: TCP rexmit by AS_PATH (i.e. from nprobe for a server or, via span/tap, a sensor).
- Important to weight absolute relevance (not just % loss if a few 3 pkt flows).

SQL -> Fastbit Querying for rexmit

Retransmits > .1% by ASN at prime-time for ASNs with > 10k pkts: SELECT i start time, src AS, dst AS, sum(tcp retransmit) AS f sum tcp retransmit, sum(out pkts) AS f sum out pkts, round((sum(tcp retransmit)/sum(out pkts))*1000)/10 AS Perc retransmits FROM COM WHERE i start time >= '2015-01-09 22:00:00' AND i start time < '2015-01-10 06:00:0' GROUP BY src_AS, dst_AS, i_start time HAVING sum(out pkts) > 10000 AND (sum(tcp retransmit)/sum(out pkts))*100 > 0.1 ORDER BY Perc retransmits DESC;

Augmented Flow: rexmit by Dest ASN

dst_as	total	Avg /sec	95th percentile	Max/sec	Avg /sec	95th percentile	Max/sec	Avg mbps Sent	Avg pkts/s Sent	
KABELDEUTSCHLAND-AS Kabel Deutschland Vertrieb und Service GmbH,DE (31334)	2015	0.55972	1.81667	2.03333	0.06236	0.20515	0.21272	36	898	≡
LGI-UPC Liberty Global Operations B.V.,AT (6830)	2417	0.67139	0.96667	3.41667	0.03415	0.05154	0.20939	87	1,966	≡
VODANET Vodafone GmbH,DE (3209)	236	0.06556	0.60000	0.71667	0.03096	0.06688	0.07601	8	212	≡
TELEAG TELE AG, DE (58243)	1401	0.38917	0.80000	1.11667	0.04325	0.06483	0.06740	35	900	≡
DTAG Deutsche Telekom AG,DE (3320)	3183	0.88417	1.50000	1.96667	0.03168	0.04959	0.05188	102	2,792	≡

Augmented Flow: rexmit by 2nd hop ASN

% Retransmits by dst second asn -

- AS6453 - TATA COMMUNICATIONS (AMERICA) INC,US (6453) - COGENT-174 - Cogent Communications,US (174) — –Reserved AS–,ZZ (0)

kentik.com

Click to select, Shift+Click to multi-select

(6830)

(174)

of Retransmits % of Retransmits **Total Traffic** 95th Avg pkts/s Avg 95th Avg mbps Avg dst second asn total /sec percentile Max/sec /sec percentile Max/sec Sent Sent LGI-UPC Liberty Global Operations B.V.,AT 6922 1.92278 8.51667 8.96667 0.10556 0.40556 0.49091 80 1,822 Ξ COGENT-174 - Cogent Communications, US 0.14361 0.10247 0.21879 0.21879 5 141 = 517 1.41667 1.41667 **TELEFONICA** Telefonica Backbone Autonomous 35 0.00972 0.58333 0.58333 0.09290 0.09290 0.09290 Ξ 1 11 System, ES (12956)

SOL

Augmented Flow: rexmit by AS_PATH

Click to select, Shift+Click to multi-select

Ł SQL

		#	of Retransmits			% of Retransmits	5	Total Traffic		
dst_bgp_aspath	total	Avg /sec	95th percentile	Max/sec	Avg /sec	95th percentile	Max/sec	Avg mbps Sent	Avg pkts/s Sent	
4436 6830 29562	912	0.25333	7.95000	7.95000	1.46997	1.52733	1.52733	1	18	≡
6169 12989 31334	2025	0.56250	1.81667	2.03333	0.06279	0.20515	0.21272	35	896	≡
4436 6830	2451	0.68083	0.96667	3.41667	0.03415	0.05154	0.20939	88	1,994	≡
4436 1273 3209	249	0.06917	0.60000	0.71667	0.03105	0.06688	0.07601	8	223	≡
6169 12989 58243	1389	0.38583	0.80000	1.11667	0.04438	0.06483	0.06740	34	870	≡
4436 3320	3071	0.85306	1.50000	1.96667	0.03092	0.04959	0.05188	102	2,760	Ξ

Use Case: Application-Level Attacks

- With URL and performance data, many kinds of application attacks can be detected.
- To get * URL info in an HTTPS world, will need to get data from load balancers or web logs.
- Simplest is WAF looking for SQL fragments, binary, or other known attack vectors.
- Can hook alerts to mitigation methods, even if running OOB (for example, send TCP FIN/RST in both directions)

Use Case: 'APM Lite'

- Combining network with application data, you can answer questions like:
 - Show/aggregate cases where application performance is impaired but we know there is no network-layer issue (very useful), and agg by POP, server, app section.
 - Or where there is impairment in both.
 - And ignore network-layer issues where users are unaffected.
- Easy first use case: API perf debugging for web page assembly, or debugging CDN origin pull.

Use Case: Bot detection

- With performance information combined with URL, basic e-commerce bot detection is possible.
- Many attacks are advanced so may require a packet approach to get complete visibility, but basic visibility can often demonstrate a problem.
- Can sometimes be done with syslog analytics, but flow tools often aggregate in interesting ways (geo, AS) that syslog analytics don't, at least out of the box.

Modern 'Flow' Format: kflow

- At today's speeds, templated formats may not be the most efficient (space/CPU) implementation.
- Working on an open-spec format called kflow with open source tools to take to and from NetFlow, sFlow, IPFIX, nginx and bro logs, and Cisco, Citrix, ntop, and other vendor formats.
- Based on Cap'n Proto, which is a 'serialization' lib that is basically a struct with 0-packing -<u>https://capnproto.org/</u>
- Drawback: Can't delete fields, just 0-pack them.
- Will shortly be live at <u>https://github.com/Kentik</u>

Flow with Cap'n Proto

```
struct kflow_v1 {
        version @44: Int64;
        timestampNano @0: Int64;
        dstAs @1: UInt32;
        dstGeo @2: UInt32;
        dstMac @3: UInt32;
        headerLen @4: UInt32;
        inBytes @5: UInt64;
        inPkts @6: UInt64;
        inputPort @7: UInt32;
        ipSize @8: UInt32;
        ipv4DstAddr @9: UInt32;
        ipv4SrcAddr @10: UInt32;
        tcpRetransmit @27: UInt32;
        dstBgpAsPath @34: Text;
        dstBgpCommunity @35: Text;
        <...>
```

Comments /

Questions?

Avi Freedman avi (at) kentik.com

